Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 24(10): 1363-1376, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30012568

RESUMO

Helical elements separated by bulges frequently undergo transitions between unstacked and coaxially stacked conformations during the folding and function of noncoding RNAs. Here, we examine the dynamic properties of poly-pyrimidine bulges of varying length (n = 1-4, 7) across a range of Mg2+ concentrations using HIV-1 TAR RNA as a model system and solution NMR spectroscopy. In the absence of Mg2+, helices linked by bulges with n ≥ 3 residues adopt predominantly unstacked conformations (stacked population <15%), whereas one-bulge and two-bulge motifs adopt predominantly stacked conformations (stacked population >74%). In the presence of 3 mM Mg2+, the helices predominantly coaxially stack (stacked population >84%), regardless of bulge length, and the midpoint for the Mg2+-dependent stacking transition is within threefold regardless of bulge length. In the absence of Mg2+, the difference between free energy of interhelical coaxial stacking across the bulge variants is estimated to be ∼2.9 kcal/mol, based on an NMR chemical shift mapping with stacking being more energetically disfavored for the longer bulges. This difference decreases to ∼0.4 kcal/mol in the presence of Mg2+ NMR RDCs and resonance intensity data show increased dynamics in the stacked state with increasing bulge length in the presence of Mg2+ We propose that Mg2+ helps to neutralize the growing electrostatic repulsion in the stacked state with increasing bulge length thereby increasing the number of coaxial conformations that are sampled. Energetically compensated interhelical stacking dynamics may help to maximize the conformational adaptability of RNA and allow a wide range of conformations to be optimally stabilized by proteins and ligands.


Assuntos
Conformação de Ácido Nucleico , Polirribonucleotídeos/química , Polirribonucleotídeos/genética , Pirimidinas , RNA Viral/química , RNA Viral/genética , HIV-1/genética , Humanos , Magnésio/química , Espectroscopia de Ressonância Magnética , Elementos de Resposta , Relação Estrutura-Atividade
2.
Phys Chem Chem Phys ; 20(14): 9063-9069, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29446423

RESUMO

Fast, low-cost and reliable DNA sequencing is one of the most desirable innovations in recent years, which can pave the way for high throughput, label-free and inexpensive personalized genome sequencing techniques. Although graphene-based nanopore devices hold great promise for next-generation DNA sequencing, it is still a challenging problem to detect different DNA sequences efficiently and accurately. In the present work, the translocation of four homogeneous DNA strands (i.e., poly(A)20, poly(C)20, poly(G)20, and poly(T)20) through the functionalized graphene nanopores is investigated by all-atom molecular dynamic simulations. Interestingly, it is found that the four types of bases could be identified by different ionic currents when they pass through the hydrogenated and hydroxylated pores. For the hydrogenated nanopore, the difference in the ionic current for the four bases is mainly attributed to the different electrostatic interactions between the base and the ion. For the hydroxylated nanopore, apart from the electrostatic interactions, the position of a nucleotide inside the nanopore and the dwell time of an ion around the nucleotide also play an important role in the ionic current. The present study could be helpful to better design a novel device for DNA sequencing in the future.


Assuntos
Grafite/química , Nanoporos , Polirribonucleotídeos/química , Análise de Sequência de DNA/métodos , DNA/análise , Hidrogênio/química , Íons/química , Simulação de Dinâmica Molecular , Eletricidade Estática , Propriedades de Superfície
3.
Chembiochem ; 18(22): 2236-2241, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-28901692

RESUMO

The synthesis of 2'-O-methyl-5-hydroxymethylcytidine (hm5 Cm), 5-hydroxymethylcytidine (hm5 C) and 5-formylcytidine (f5 C) phosphoramidite monomers has been developed. Optimisation of mild post-synthetic deprotection conditions enabled the synthesis of RNA containing all four naturally occurring cytosine modifications (hm5 Cm, hm5 C, f5 C plus 5-methylcytosine). Given the considerable interest in RNA modifications and epitranscriptomics, the availability of synthetic monomers and RNAs containing these modifications will be valuable for elucidating their biological function(s).


Assuntos
Citidina/análogos & derivados , Oligonucleotídeos/química , Oligonucleotídeos/síntese química , RNA/química , RNA/síntese química , Citidina/química , Estrutura Molecular , Polirribonucleotídeos/síntese química , Polirribonucleotídeos/química
4.
J Photochem Photobiol B ; 174: 173-181, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28779690

RESUMO

Single stranded RNAs are biologically potent as they participate in various key cellular processes. The binding efficacy of two potent anticancer alkaloids, sanguinarine (here after SANG) and chelerythrine (here after CHEL), with single-stranded ribonucleic acids poly(rI), poly(rG), and poly(rC) were studied using spectroscopic and thermodynamic tools. Results reveal that both SANG and CHEL binds well with single stranded RNAs with affinity in the order poly(rI)>poly(rG)>poly(rC). CHEL showed slightly higher affinity compared to SANG with all the single stranded RNAs. Both SANG and CHEL showed association affinity of the lower 106 order with poly(rI), higher 105 order binding with poly(rG) and lower 105 order with poly(rC). The binding mode was partial intercalation due to the staking interaction between the bases and the alkaloids. The complexation of both the SANG and CHEL to the RNAs were mainly enthalpy driven and also favoured by entropy changes. Perturbation was observed in the RNA conformation due to binding of the alkaloids. In this present study we have deciphered the fundamental structural and calorimetric aspects of the interaction of the natural benzophenanthridine alkaloids with single stranded RNAs and these results may help to develop new generation alkaloid based therapeutics targeting single stranded RNAs.


Assuntos
Benzofenantridinas/química , Isoquinolinas/química , Isoquinolinas/metabolismo , Polirribonucleotídeos/metabolismo , RNA/metabolismo , Benzofenantridinas/metabolismo , Polirribonucleotídeos/química , RNA/química , Análise Espectral , Termodinâmica
5.
Biochemistry ; 55(51): 7141-7150, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27959512

RESUMO

Conformational dynamics play a critical role in ligand binding, often conferring divergent activities and specificities even in species with highly similar ground-state structures. Here, we employ time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX) to characterize the changes in dynamics that accompany oligonucleotide binding in the atypical RNA recognition motif (RRM2) in the C-terminal domain (CTD) of human La protein. Using this approach, which is uniquely capable of probing changes in the structure and dynamics of weakly ordered regions of proteins, we reveal that binding of RRM2 to a model 23-mer single-stranded RNA and binding of RRM2 to structured IRES domain IV of the hepatitis C viral (HCV) RNA are driven by fundamentally different dynamic processes. In particular, binding of the single-stranded RNA induces helical "unwinding" in a region of the CTD previously hypothesized to play an important role in La and La-related protein-associated RNA remodeling, while the same region becomes less dynamic upon engagement with the double-stranded HCV RNA. Binding of double-stranded RNA also involves less penetration into the RRM2 binding pocket and more engagement with the unstructured C-terminus of the La CTD. The complementarity between TRESI-HDX and Δδ nuclear magnetic resonance measurements for ligand binding analysis is also explored.


Assuntos
Autoantígenos/química , Motivo de Reconhecimento de RNA , RNA de Cadeia Dupla/química , RNA/química , Ribonucleoproteínas/química , Autoantígenos/genética , Autoantígenos/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Medição da Troca de Deutério/métodos , Hepatite C/genética , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Polirribonucleotídeos/química , Polirribonucleotídeos/genética , Polirribonucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , RNA/genética , RNA/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
6.
Sci Rep ; 6: 19437, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26777121

RESUMO

Application of a polyvinylalcohol-coated (PVA-coated) capillary in capillary gel electrophoresis (CGE) enables the selective separation of oligoribonucleotides and their modifications at high resolution. Quality assessment of shorter oligomers of small interfering RNA (siRNA) is of key importance for ribonucleic acid (RNA) technology which is increasingly being applied in medical applications. CGE is a technique of choice for calculation of chemically synthesized RNAs and their modifications which are frequently obtained as a mixture including shorter oligoribonucleotides. The use of CGE with a PVA-coated capillary to analyze siRNA mixtures presents an alternative to conventionally employed techniques. Here, we present study on identification of the length and purity of RNA mixture ingredients by using PVA-coated capillaries. Also, we demonstrate the use of PVA-coated capillaries to identify and separate phosphorylated siRNAs and secondary structures (e.g. siRNA duplexes).


Assuntos
Eletroforese Capilar , Polirribonucleotídeos/química , Álcool de Polivinil , Dióxido de Silício , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar/métodos , Conformação de Ácido Nucleico , Fosforilação , Poli A/química , Poli U/química , Álcool de Polivinil/química , RNA/química , Dióxido de Silício/química
7.
Phys Chem Chem Phys ; 17(26): 17202-13, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26073991

RESUMO

A comparative study on the interaction of a benzophenanthridine alkaloid chelerythrine (CHL) with RNA triplex poly(U).poly(A)*poly(U) (hereafter U.A*U, .(dot) and *(asterisk) represent Watson-Crick and Hoogsteen base pairing respectively) and its parent duplex poly(A).poly(U) (A.U) was carried out by using a combination of various spectroscopic, viscometric and calorimetric techniques. The interaction was characterized by hypochromic and bathochromic effects in the absorption spectrum, the increase of thermal melting temperature, enhancement in solution viscosity, and perturbation in the circular dichroic spectrum. The binding constant calculated by using spectrophotometric data was in the order of 10(5) for both forms of RNA, but it was greater for triplex RNA (30.2 × 10(5) M(-1)) than duplex RNA (3.6 × 10(5) M(-1)). Isothermal titration calorimetric data are in good agreement with the spectrophotometric data. The data indicated stronger binding of CHL to the triplex structure of RNA compared to the native duplex structure. Thermal melting studies indicated greater stabilization of the Hoogsteen base paired third strand of the RNA triplex compared to its Watson-Crick strands. The mode of binding of CHL to both U.A*U and A.U was intercalation as revealed from fluorescence quenching, viscosity measurements and sensitization of the fluorescence experiment. Thermodynamic data obtained from isothermal calorimetric measurements revealed that association was favoured by both a negative enthalpy change and a positive entropy change. Taken together, our results suggest that chelerythrine binds and stabilizes the RNA triplex more strongly than its respective parent duplex. The results presented here may be useful for formulating effective antigene strategies involving benzophenanthridine alkaloids and the RNA triplex.


Assuntos
Benzofenantridinas/química , Calorimetria , Polirribonucleotídeos/química , RNA/química , Sítios de Ligação , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Estrutura Molecular , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
8.
Metallomics ; 6(11): 2148-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25313017

RESUMO

There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.


Assuntos
Modelos Moleculares , Polirribonucleotídeos/química , Polirribonucleotídeos/metabolismo , Rutênio/química , Rutênio/metabolismo , Piridinas
9.
J Am Chem Soc ; 135(23): 8632-8, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23692291

RESUMO

In this manuscript a multitechnique approach is proposed to characterize the interaction between new tri-N-methylpyridyl corrole (TMPC) and its germanium(IV) derivative (GeTMPC), with single- and double-stranded nucleic acid homopolymers and calf thymus DNA. The specificity of each spectroscopic technique has been exploited to analyze the different aspects of corrole binding. Noteworthy, this approach allows us to distinguish between H aggregation of TMPC in the presence of polyriboadenilic acid (poly(rA)) and J aggregates in the presence of polyribocytidinic acid (poly(rC)) as well as to identify the formation of GeTMPC dimers in the presence of single-stranded poly(rA) and pseudointercalation with single-stranded poly(rC).


Assuntos
DNA/química , Germânio/química , Compostos Organometálicos/química , Polirribonucleotídeos/química , Porfirinas/química , Cátions/química , Estrutura Molecular
10.
J Biol Inorg Chem ; 18(1): 71-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23111627

RESUMO

The binding properties of [RuL(2)(mip)](2+) {where L is 1,10-phenanthroline (phen) or 4,7-dimethyl-1,10-phenanthrollne (4,7-dmp) and mip is 2'-(3",4"-methylenedioxyphenyl)imidazo[4',5'-f][1,10]phenanthroline} with regard to the triplex RNA poly(U)·poly(A)*poly(U) were investigated using various biophysical techniques and quantum chemistry calculations. In comparison with [Ru(4,7-dmp)(2)(mip)](2+), remarkably higher binding affinity of [Ru(phen)(2)(mip)](2+) for the triplex RNA poly(U)·poly(A)*poly(U) was achieved by changing the ancillary ligands. The stabilization of the Hoogsteen-base-paired third strand was improved by about 10.9 °C by [Ru(phen)(2)(mip)](2+) against 6.6 °C by [Ru(4,7-dmp)(2)(mip)](2+). To the best of our knowledge, [Ru(phen)(2)(mip)](2+) is the first metal complex able to raise the third-strand stabilization of poly(U)·poly(A)*poly(U) from 37.5 to 48.4 °C. The results reveal that the ancillary ligands have an important effect on third-strand stabilization of the triplex RNA poly(U)·poly(A)*poly(U) when metal complexes contain the same intercalative ligands.


Assuntos
Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Polirribonucleotídeos/química , Polirribonucleotídeos/metabolismo , Estabilidade de RNA , Rutênio/química , Ligantes , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Teoria Quântica , Temperatura , Viscosidade
11.
Eur Phys J E Soft Matter ; 35(10): 110, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23099534

RESUMO

Single-molecule experiments on double-stranded B-DNA stretching have revealed one or two structural transitions, when increasing the external force. They are characterized by a sudden increase of DNA contour length and a decrease of the bending rigidity. The nature and the critical forces of these transitions depend on DNA base sequence, loading rate, salt conditions and temperature. It has been proposed that the first transition, at forces of 60-80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA, while the second one, at stronger forces, is a strand peeling resulting in single-stranded DNAs (ssDNA), similar to thermal denaturation. But due to experimental conditions these two transitions can overlap, for instance for poly(dA-dT). In an attempt to propose a coherent picture compatible with this variety of experimental observations, we derive an analytical formula using a coupled discrete worm-like chain-Ising model. Our model takes into account bending rigidity, discreteness of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit of zero force, this model simplifies into a coupled model already developed by us for studying thermal DNA melting, establishing a connection with previous fitting parameter values for denaturation profiles. Our results are summarized as follows: i) ssDNA is fitted, using an analytical formula, over a nano-Newton range with only three free parameters, the contour length, the bending modulus and the monomer size; ii) a surprisingly good fit on this force range is possible only by choosing a monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase length; iii) mesoscopic models are not able to fit B to ssDNA (or S to ss) transitions; iv) an analytical formula for fitting B to S transitions is derived in the strong force approximation and for long DNAs, which is in excellent agreement with exact transfer matrix calculations; v) this formula fits perfectly well poly(dG-dC) and λ-DNA force-extension curves with consistent parameter values; vi) a coherent picture, where S to ssDNA transitions are much more sensitive to base-pair sequence than the B to S one, emerges. This relatively simple model might allow one to further study quantitatively the influence of salt concentration and base-pairing interactions on DNA force-induced transitions.


Assuntos
DNA de Forma B/química , DNA de Cadeia Simples/química , Fenômenos Mecânicos , Modelos Moleculares , Conformação de Ácido Nucleico , Bacteriófago lambda , Fenômenos Biomecânicos , DNA Viral/química , Dinâmica não Linear , Polirribonucleotídeos/química
12.
Inorg Chem ; 51(8): 4417-9, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22462534

RESUMO

Stabilization of triple helical structures is extremely important for carrying out their biological functions. Nucleic acid triple helices may be formed with DNA or RNA strands. In contrast to many studies in DNA, little has been reported concerning the recognition of the RNA triplex by transition-metal complexes. In this article, [Ru(phen)(2)(mdpz)](2+) (Ru1) is the first metal complex able to enhance the stability of the RNA triplex Poly(U)·Poly(A)*Poly(U) and serve as a prominent molecular "light switch" for the RNA triplex.


Assuntos
Conformação de Ácido Nucleico , Compostos Organometálicos/química , Polirribonucleotídeos/química , Piridinas/química , RNA/química , Rutênio/química , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-22297995

RESUMO

Eukaryotic poly(A)-binding protein (PABP) commonly binds to the 3'-UTR poly(A) tail of every mRNA, but it also binds to the 5'-UTR of PABP mRNA for autoregulation of its expression. In the sequence of the latter binding site, the contiguous A residues are segmented discretely by the insertion of short pyrimidine oligonucleotides as linkers, so that (A)(6-8) segments are repeated six times. This differs from the poly(A)-tail sequence, which has a higher binding affinity for PABP. In order to examine whether the A-rich repeats have a functional structure, several RNA/DNA analogues were subjected to crystallization. It was found that some of them could be crystallized. Single crystals thus obtained diffracted to 4.1 Å resolution. The fact that the repeated sequences can be crystallized suggests the possibility that the autoregulatory sequence in PABP mRNA has a specific structure which impedes the binding of PABP. When PABP is excessively produced, it could bind to this sequence by releasing the structure in order to interfere with initiation-complex formation for suppression of PABP translation. Otherwise, PABP at low concentration preferentially binds to the poly(A) tail of PABP mRNA.


Assuntos
Poli A/química , Proteínas de Ligação a Poli(A)/metabolismo , Polirribonucleotídeos/química , Biossíntese de Proteínas , Sequências Repetitivas de Ácido Nucleico , Cristalização , Polirribonucleotídeos/metabolismo , Ligação Proteica
14.
J Phys Chem B ; 113(40): 13410-20, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19754095

RESUMO

The interaction of two natural protoberberine alkaloids berberine and palmatine and the synthetic derivative coralyne with the RNA triplex poly(U).poly(A)(*)poly(U) was studied using various biophysical and calorimetric techniques. All the three alkaloids bind noncooperatively to the triplex. The affinity of berberine and palmatine was in the order of 10(5) M(-1), while that of coralyne was one order higher as inferred from spectroscopic studies. The alkaloids stabilized the Hoogsteen base-paired third strand of the triplex without affecting the stability of the duplex. Fluorescence quenching and viscosity studies gave convincing evidence for the partial intercalation of berberine and palmatine and a true intercalative binding of coralyne to the triplex. This was further supported from the significant polarization of the emission spectra of the complex and the energy transfer from the base triplets to the alkaloids. Circular dichroic studies suggested that the conformation of the triplex was perturbed significantly by the binding of the alkaloids, being more by coralyne compared to berberine and palmatine and also evidenced by the generation of strong induced optical activity in the bound coralyne molecules. Isothermal titration calorimetric studies revealed that the binding to the triplex was favored by a predominantly large negative enthalpy change (DeltaH degrees = -5.42 kcal/mol) with small favorable entropy contribution (TDeltaS degrees = 2.02 kcal/mol) in berberine, favored by almost equal negative enthalpy (DeltaH degrees = -3.93 kcal/mol) and entropy changes (TDeltaS degrees = 3.89 kcal/mol) in palmatine and driven by predominant entropy contributions (DeltaH degrees = -1.84 and TDeltaS degrees = 7.44 kcal/mol) in coralyne. These results advance our knowledge on the binding of small molecule isoquinoline alkaloids that are specific binders of RNA structures, particularly triplexes.


Assuntos
Alcaloides de Berberina/química , Berberina/química , Isoquinolinas/química , Conformação de Ácido Nucleico , Polirribonucleotídeos/química , Estrutura Molecular , RNA/química , RNA/genética , Termodinâmica
15.
Biochem Biophys Res Commun ; 388(1): 127-30, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19646956

RESUMO

The regular (CAA)(n) polyribonucleotide, as well as the omega leader sequence containing (CAA)-rich core, have recently been shown to form cooperatively melted and compact structures. In this report, we propose a structural model for the (CAA)(n) sequence in which the polyribonucleotide chain is folded upon itself, so that it forms an intramolecular triple helix. The triple helix is stabilized by hydrogen bonding between bases thus forming coplanar triads, and by stacking interactions between the base triads. A distinctive feature of the proposed triple helix is that it does not contain the canonical double-helix elements. The difference from the known triple helices is that Watson-Crick hydrogen bond pairings do not take place in the interactions between the bases within the base triads.


Assuntos
Regiões 5' não Traduzidas , Adenina/química , Citosina/química , Modelos Químicos , Conformação de Ácido Nucleico , Polirribonucleotídeos/química , Sequência de Bases , Ligação de Hidrogênio , RNA Viral/química
16.
Biomed Chromatogr ; 23(7): 745-53, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19296518

RESUMO

The recent application of histidine-agarose affinity supports in plasmid purification takes advantage of the biorecognition of nucleic acid bases by the histidine ligand. This consideration prompted the need for better understanding the interactions involved in affinity chromatography of plasmid DNA with the histidine-agarose support. In this work, we used synthetic homo-deoxyoligonucleotides with different sizes (1-30 nucleotides long), to explore the effect of several conditions like hydrophobic character of the individual bases, presence of secondary structures, temperature, pH and salt concentration on the mechanism of retention of nucleic acids to histidine-agarose support. One of the most striking results shows that histidine interacts preferentially with guanine, and the presence of secondary structures on polyA and polyG oligonucleotides has a significant influence on retention. Otherwise, the temperature manipulation has not shown a direct influence on oligonucleotide retention, only inducing conformational changes on secondary structures. Overall, the results obtained provide valuable information for the future development and implementation of histidine and other amino acids as ligands in chromatography for the purification of plasmid DNA and other nucleic acids, by improving the knowledge of the interactions involved as well as of the parameters influencing the retention.


Assuntos
Cromatografia de Afinidade/métodos , Histidina/química , Poli T/química , Polirribonucleotídeos/química , Sulfato de Amônio/química , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico , Poli T/isolamento & purificação , Polirribonucleotídeos/isolamento & purificação , Temperatura
17.
J Phys Chem B ; 113(4): 1210-24, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19132839

RESUMO

The interaction of two natural protoberberine plant alkaloids berberine and palmatine and a synthetic derivative coralyne to three double stranded ribonucleic acids, poly(A). poly(U), poly(I).poly(C) and poly(C).poly(G) was studied using various biophysical techniques. Absorbance and fluorescence studies showed that the alkaloids bound cooperatively to these RNAs with the binding affinities of the order 10(4) M(-1). Circular dichroic results suggested that the conformation of poly(A). poly(U) was perturbed by all the three alkaloids, that of poly(I).poly(C) by coralyne only and that of poly(C).poly(G) by none. Fluorescence quenching studies gave evidence for partial intercalation of berberine and palmatine and complete intercalation of coralyne to these RNA duplexes. Isothermal titration calorimetric studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived were in agreement with the overall binding affinity from spectral data. The binding of all the three alkaloids considerably stabilized the melting of poly(A). poly(U) and poly(I).poly(C) and the binding data evaluated from the melting data were in agreement with that obtained from other techniques. The overall binding affinity of the alkaloids to these double stranded RNAs varied in the order, berberine = palmatine < coralyne. The temperature dependence of the enthalpy changes afforded large negative values of heat capacity changes for the binding of palmatine and coralyne to poly(A).poly(U) and of coralyne to poly(I).poly(C), suggesting substantial hydrophobic contribution in the binding process. Further, enthalpy-entropy compensation was also seen in almost all the systems that showed binding. These results further advance our understanding on the binding of small molecules that are specific binders to double stranded RNA sequences.


Assuntos
Alcaloides/química , Alcaloides de Berberina/química , Berberina/química , Polirribonucleotídeos/química , RNA de Cadeia Dupla/química , Pareamento de Bases , Sítios de Ligação , Calorimetria/métodos , Cinética , Modelos Moleculares , Espectrofotometria/métodos , Termodinâmica
18.
J Chem Phys ; 128(17): 175101, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18465940

RESUMO

We analyze the band structure and interband optical transitions in a dangling backbone ladder DNA model. Using this model, semiconducting synthetic poly(G)-poly(C) DNA is studied by means of a tight-binding model traditionally used for transport studies. Numerical calculations for optical absorption spectra are also presented. By studying the eigenstates' symmetries in uniform and nonuniform DNA chains, we conclude that, in both cases, the transitions are almost vertical in K space. The optical gap turns out larger than the electronic one, and an indirect band gap electronic structure for this DNA model is revealed. The effects of the environment, which are relevant for the wet form of DNA, are taken into account by introducing disorder in the backbone levels. We demonstrate that they affect more the spectra in the case of parallel polarization of the incoming light (with respect to the molecule axis). In such a case, the closure of the gap appears for a large enough disorder. We also consider the natural helix DNA conformation and find unusual selection rules for interband optical transitions. We propose that a comparison between the obtained spectra and the experiments can provide an insight into the electronic band structure of DNA.


Assuntos
DNA/química , Modelos Químicos , Óptica e Fotônica , Absorção , Conformação de Ácido Nucleico , Polirribonucleotídeos/química
19.
Microbiol Res ; 163(1): 31-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-16644192

RESUMO

The first ribonuclease (RNase) from the Cytophaga-Flavobacterium-Bacteroides phylum, dominant in the marine environment, and also from the first Bizionia species isolated from the tropics was purified and characterized. Extracellular RNase production occurred when the culture medium contained 5-7% (w/v) NaCl. The 53.0 kDa enzyme was purified 29 folds with a recovery of 4% and specific activity of 630unit/mg protein. The pH and temperature optima are 6.5 and 35 degrees C, respectively and the enzyme retains more than half of its activity (relative to optimal assay conditions) after 1h pre-incubation separately with 5% (w/v) NaCl or from pH 5.0 to 8.5 or at 50 degrees C. Dithiothreitol and beta-mercaptoethanol do not inhibit whereas human placental RNase inhibitor protein halves the RNase activity. While Mg(2+), Ba(2+) and Ca(2+) enhanced the enzyme activity, Fe(2+), Cu(2+) and Hg(2+) inactivated it. This RNase degrades uracil containing nucleic acids only. Our isolate could be a novel renewable source of deoxyribonuclease (DNase)--free RNase enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Flavobacteriaceae/enzimologia , Sedimentos Geológicos/microbiologia , Ribonucleases/metabolismo , Microbiologia da Água , Proteínas de Bactérias/isolamento & purificação , Meios de Cultivo Condicionados/metabolismo , Inibidores Enzimáticos/farmacologia , Flavobacteriaceae/efeitos dos fármacos , Flavobacteriaceae/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Íons/farmacologia , Biologia Marinha , Metais/farmacologia , Peso Molecular , Oceanos e Mares , Polirribonucleotídeos/química , Polirribonucleotídeos/metabolismo , RNA/metabolismo , Ribonucleases/química , Ribonucleases/isolamento & purificação , Especificidade por Substrato , Temperatura , Uracila
20.
Biochem Biophys Res Commun ; 358(1): 368-72, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17482561

RESUMO

The 5'-untranslated region (5'-UTR) of RNA of tobacco mosaic virus (TMV), called omega sequence, is known as an mRNA leader promoting efficient initiation of translation. The central part of the sequence consists of many CAA repeats, which were reported to be mainly responsible for the enhancing activity of the omega leader. In this work we synthesized the polyribonucleotides containing either the natural omega sequence or the regular (CAA)(n) sequence, and studied them using UV spectrophotometry and analytical ultracentrifugation methods. It was demonstrated that the polyribonucleotides manifest significant hypochromicity, cooperative melting of their structures upon heating, high melting temperature, and the sedimentation coefficients typical of compactly folded RNAs of this size. Thus, the omega leader and its core (CAA)(n) repeat sequence devoid of secondary structure of the Watson-Crick type seem to be well structured elements of mRNA.


Assuntos
Regiões 5' não Traduzidas/química , Pareamento de Bases , Conformação de Ácido Nucleico , RNA Viral/química , Vírus do Mosaico do Tabaco/química , Repetições de Trinucleotídeos/genética , Polirribonucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...